On density of compactly supported smooth functions in fractional Sobolev spaces

نویسندگان

چکیده

Abstract We describe some sufficient conditions, under which smooth and compactly supported functions are or not dense in the fractional Sobolev space $$W^{s,p}(\Omega )$$ W s , p ( Ω ) for an open, bounded set $$\Omega \subset \mathbb {R}^{d}$$ ⊂ R d . The density property is closely related to lower upper Assouad codimension of boundary $$\Omega$$ also explicitly closure $$C_{c}^{\infty }(\Omega C c ∞ mild assumptions about geometry Finally, we prove a variant order Hardy inequality.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactly supported wavelet bases for Sobolev spaces

In this paper we investigate compactly supported wavelet bases for Sobolev spaces. Starting with a pair of compactly supported refinable functions φ and φ̃ in L2(R) satisfying a very mild condition, we provide a general principle for constructing a wavelet ψ such that the wavelets ψjk := 2j/2ψ(2j · − k) (j, k ∈ Z) form a Riesz basis for L2(R). If, in addition, φ lies in the Sobolev space H(R), t...

متن کامل

Compactly Supported Powell–Sabin Spline Multiwavelets in Sobolev Spaces

In this paper we construct Powell–Sabin spline multiwavelets on the hexagonal lattice in a shift-invariant setting. This allows us to use Fourier techniques to study the range of the smoothness parameter s for which the wavelet basis is a Riesz basis in the Sobolev space H(R), and we find that 0.431898 < s < 5/2. For those s, discretizations of H -elliptic problems with respect to the wavelet b...

متن کامل

Construction of multivariate compactly supported prewavelets in L2 space and pre-Riesz bases in Sobolev spaces

We give a new constructive method for finding compactly supported prewavelets in L2 spaces in the multivariate setting. This method works for any dimensional space. When this method is generalized to the Sobolev space setting, it produces a pre-Riesz basis for Hs(IR) which can be useful for applications. AMS(MOS) Subject Classifications: Primary 42C15, Secondary 42C30

متن کامل

Composition in Fractional Sobolev Spaces

1. Introduction. A classical result about composition in Sobolev spaces asserts that if u ∈ W k,p (Ω)∩L ∞ (Ω) and Φ ∈ C k (R), then Φ • u ∈ W k,p (Ω). Here Ω denotes a smooth bounded domain in R N , k ≥ 1 is an integer and 1 ≤ p < ∞. This result was first proved in [13] with the help of the Gagliardo-Nirenberg inequality [14]. In particular if u ∈ W k,p (Ω) with kp > N and Φ ∈ C k (R) then Φ • ...

متن کامل

“compactly” Supported Frames for Spaces of Distributions on the Ball

Frames are constructed on the unit ball Bd in Rd consisting of smooth functions with small shrinking supports. The new frames are designed so that they can be used for decomposition of weighted Triebel Lizorkin and Besov spaces on Bd with weight wμ(x) := (1 − |x|2)μ−1/2, μ half integer, μ ≥ 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2021

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-021-01181-8